Inhaltsverzeichnis

1.		Einleitung	1
2.		Allgemeines	3
	2.1	GEGENÜBERSTELLUNG DER DARSTELLUNGEN	3
	2.2	DIAGRAMME FÜR ZUGKRAFT UND DREHMOMENT	3
		2.2.1 ZUGKRAFT F=f(D) UND F=f(N)	4
		2.2.2 Drehmoment $M = f(D)$ und $M = f(N)$	6
	2.3	BAHNFÜHRUNG	7
		2.3.1 FÜHRUNG DER MATERIALBAHN	7
		2.3.2 NICHT ANGETRIEBENE BAHNFÜHRUNGSWALZEN	8
		2.3.3 ANGETRIEBENE BAHNFÜHRUNGSWALZEN	9
		2.3.4 Antrieb mit begrenztem Drehmoment.	9
		2.3.4.1 Indirekter Antrieb mit gemeinsamer Achse	10
		2.3.4.2 Indirekter Antrieb mit geteilter Achse	10
		2.3.5 DURCHBIEGUNG EINER BAHNFÜHRUNGSWALZE	11
		2.3.5.1 Programm zur Berechnung der Walzendurchbiegung	12
		2.3.5.2 Massenträgheitsmoment einer Walze	18
		2.3.5.3 Lagerung	21
		2.3.6 LUFTEINSCHLUSS AM WALZENAUFLAUF	22
		2.3.6.1 Reynold	22
		2.3.6.2 Schichtstärke der laminaren Strömung	24
		2.3.6.3 Schubspannung	25
		2.3.6.4 Quetschdruck	28
		2.3.6.5 Anpresskraft	28
		2.3.7 AUSRICHTEN VON BAHNFÜHRUNGSWALZEN	30
		2.3.7.1 Wellenwasserwaage	30
		2.3.7.2 Nivelliergerät	31
		2.3.7.3 Stahlmaßband	31
		2.3.7.4 Parallel-Endmaß mit Messuhr	32
3.		Rauheit einer Oberfläche	33
	3.1	Rauheitsparameter	34
	3.2	Antrieb einer Bahnführungswalze	35
4.		Messung von Bahnzugspannungen	37
	4.1	TRANSPORT VON FOLIEN	 37
	4.2	TÄNZER	39
		4.2.1 BAHNZUGKRAFT DURCH TÄNZER	40
		4.2.2 STEUERUNG DER MATERIALGESCHWINDIGKEIT	40
	4.3	Pendel	41
		4.3.1 ALLGEMEIN	41
		4.3.2 PENDEL WAAGERECHT	41
		4.3.2.1 Walzenabstand A	42
		4.3.2.2 Eingespeicherte Warenlänge (Speicherlänge)	44
		4.3.3 STEUERUNG DER MATERIALGESCHWINDIGKEIT	45
		4.3.4 EINFLUSS DER MASSENTRÄGHEIT	45
		-	

		4.3.4.1 Verbindungsrohr der Pendelarme	47
		4.3.4.2 Pendelarme	47
		4.3.4.3 Massenträgheitsmoment	48
		4.3.4.4 Pendelwalze	48
		4.3.4.5 Ausgleichsgewicht	48
	4.4	PENDELARM SENKRECHT	56
		4.4.1 Pendel ohne Ausgleichsgewicht	56
		4.4.2 PENDEL MIT AUSGLEICHSGEWICHT	58
		4.4.3 SCHRÄGE EINLEITUNG DER ZYLINDERKRAFT	59
		4.4.4 FEHLERBETRACHTUNG	60
	4.5	REGELUNG MIT PENDELWALZE	61
	4.6	ZUGMESSWALZE	62
		4.6.1 DEHNUNGSMESSSTREIFEN	62
		4.6.1.1 Anwendung	62
		4.6.1.2 Aufbau und Formen	62
		4.6.1.3 Wirkungsweise	63
		4.6.1.4 DMS-Werkstoffe	64
		4.6.1.4.1 MAXIMALE DEHNBARKEIT	65
		4.6.1.4.2 DMS-WIDERSTAND	65
		4.6.1.5 Störgrößen	65
		4.6.1.6 Messverfahren	65
		4.6.1.7 Brückenschaltung mit Dehnungsmessstreifen	65
		4.6.2 BERECHNUNGSPROGRAMM FÜR KRAFTAUFNEHMER	67
		4.6.3 Messlager in der Praxis	69
5.		Festpunkt	70
	5.1	EIN-WALZENABZUG	70
	5.2	QUETSCH-WALZENABZUG	73
	5.3	Zwei-Walzen-Abzug	74
	5.4	OMEGA-WALZEN-ABZUG	77
	5.5	Saugwalze	78
6.		Wickelverfahren	80
	6.1	ZENTRUMSANTRIEB	80
		6.1.1 FORMELN FÜR ZUGKRAFT UND DREHMOMENT	81
		6.1.2 Drehmomentsteuerung	83
		6.1.3 Drehmomentregelung	84
		6.1.3.1 Reibungskompensation	85
		6.1.4 Drehzahlregelung	87
		6.1.5 FRIKTIONSWICKLUNG	88
		6.1.6 ZENTRALWICKLER MIT KONTAKTWALZE	94
	6.2	ZENTRALANTRIEB MIT SPALT ZUR KONTAKTWALZE	94
		6.2.1 Freie Warenbahnlänge	95
		6.2.2 ZENTRALANTRIEB MIT REITERWALZE	99
	6.3	SPIRALISIEREN UND TELESKOPIEREN	100
		6.3.1 Spiralisieren	100
		6.3.2 LAGENDRUCK	100

				Einleitung
		6.3.3	PASSIVE SCHIEBEKRAFT	101
		6.3.4	AKTIVE SCHIEBEKRAFT	102
		6.3.5	Teleskopieren	103
		6.3.6	LAGENDRUCK	115
		6.3.7	WIE KANN DIE PASSIVE SCHIEBEKRAFT VERÄNDERT WERDEN?	116
		6.3.8 6.3.9	WIE KANN DIE AKTIVE SCHIEBEKRAFT VERÄNDERT WERDEN EINFLUSS DES KERNDURCHMESSERS AUF DEN LAGENDRUCK	116 117
		6.3.10		117
		6.3.11	,	119
	6.4	ZENTR	ALANTRIEB MIT WENDEBÜGELWALZE	121
7.		Kont	aktwickler	124
	7.1	U MFA	NGSANTRIEB	124
	7.2	Störn	MOMENT	124
	7.3	Antri	EBE IN EINER KONTAKT-WICKELMASCHINE	131
	7.4	KONT	aktwickler mit Stützwalze	132
	7.5	TRAG	WALZENWICKLER, KLASSISCHES PRINZIP	133
	7.6	TRAG	WALZENWICKLER, VEREINFACHTES PRINZIP	135
8.		Antri	ebsvergleich	137
	8.1	EINLEI	TUNG	137
	8.2	ELEKT	137	
	8.3	TECHN	IISCHE AUSFÜHRUNG VON MOTOREN	139
	8.4	GLEICI	HSTROMMOTOR	140
	8.5	SYNCH	IRONMOTOR	141
	8.6	Asyno	CHRONMOTOR	142
	8.7	Asyno	CHRONE WECHSELSTROM-KLEINANTRIEBE	145
	8.8		AARZAHL	146
		8.8.1	GRUNDLAGEN	146
		8.8.2		146
		8.8.4	POLPAARZAHL UND DREHZAHL POLPAARZAHL UND DREHMOMENT	147 148
9.			uenzumrichter	148
J.	9.1	•	DAUFBAU	149
	9.2		IISCHER HINTERGRUND	150
	9.3		ITERTER DREHZAHLBEREICH	150
	9.4		JF MIT HOHEM DREHMOMENT	151
	9.5	EINSATZ UND EINSCHRÄNKUNGEN		151
	9.6	Anwe	NDUNGSGEBIETE	152
		9.6.1	ELEKTRISCHE BAHNEN	152
		9.6.2	Pumpen- und Lüfteranwendungen	152
		9.6.3	Wickelantriebe	153
		9.6.4	HEBE- UND FORTBEWEGUNGSANWENDUNGEN	153
		9.6.5	Servoantriebe	153

	9.7	SCHNITTSTELLEN	153
	9.8	Parametrierung	154
		9.8.1 WICKELRECHNER	154
	9.9	RÜCKSPEISUNG UND VIERQUADRANTENBETRIEB	154
	9.10	BETRIEBSARTEN FÜR FU	155
		9.10.1 U/F-BETRIEB	155
		9.10.2 ÜBERSICHT ÜBER DIE VERSCHIEDENEN U/F KENNLINIEN	157
		9.10.2.1 Grundstellbereich	157
		9.10.2.2 Feldschwächbereich	157
		9.10.2.3 U/f Kennlinie – Grenzfrequenz	158
		9.10.2.4 Betriebskennlinien bei Eckfrequenz 50 Hz 9.10.2.5 Betriebskennlinien bei Eckfrequenz 87 Hz	159
		9.10.2.5 Betriebskennlinien bei Eckfrequenz 87 Hz 9.10.3 FELDORIENTIERTE REGELUNG	159 160
		9.10.4 KOMMUTIERUNGSARTEN	160
		9.10.5 OPTIMIERUNG DURCH ÜBERLAGERUNG VON OBERSCHWINGUNGEN	162
	9.11	EMV-Problematik	163
		9.11.1 SCHALTVORGÄNGE	163
		9.11.2 NETZRÜCKWIRKUNGEN	164
		9.11.3 AUSWIRKUNGEN AUF DEN ELEKTROMOTOR	165
		9.11.4 GERÄUSCHVERHALTEN	166
10.		Zentral – Aufwickler mit FU	166
	10.1	KENNLINIEN VERSCHIEDENER ANTRIEBSSYSTEME	 166
	10.2	ZENTRALANTRIEB ASYNCHRONMOTOR	167
	10.3	BERECHNUNG FÜR EINEN WICKELANTRIEB	169
		10.3.1 GETRIEBEÜBERSETZUNG	169
		10.3.2 Berechnungsbeispiel mit Asynchronmaschine mit $f_N = 50 \text{ Hz}$	172
		10.3.3 BERECHNUNGSBEISPIEL MIT ASYNCHRONMASCHINE MIT F _E = 86,6 Hz	180
		10.3.4 Kriterien beim Anwickeln	182
11.		Bundrechner, Wickelrechner	190
	11.1	BERECHNUNG ÜBER GESCHWINDIGKEIT UND DREHZAHL	190
	11.2	Berechnung über den Materialweg	191
	11.3	BERECHNUNG ÜBER MATERIALSTÄRKE	191
	11.4	ERFASSUNG ÜBER SENSOREN	192
		11.4.1 Ultraschall-Sensoren	192
		11.4.2 LASERSENSOREN	193
12.		Abwickler	194
	12.1	ABWICKELSYSTEME	194
		12.1.1 SCHIEBEKRÄFTE IM WICKEL	195
		12.1.2 BESCHLEUNIGEN UND BREMSEN EINER ROLLE	196
	12.2	ABWICKLER MIT ZENTRALANTRIEB	203
	12.3	DIREKTES ABZIEHEN	203
	12.4	UMFANGSABWICKLUNG	206

Fin	leitu	nσ
	CICO	

	12.5	Änderungen innerhalb des Wickels	207
	12.6	AUTOMATISCHER ROLLENWECHSEL	207
13.		Regelungstechnik	210
	13.1	Einführung	210
	13.2	ALLGEMEINES	211
		13.2.1 Begriffe	212
		13.2.2 ALLGEMEINE ANFORDERUNGEN	213
		13.2.3 P-REGLER	213
		13.2.4 I-REGLER	214
		13.2.5 PI-REGLER	215
		13.2.6 PD-REGLER	216
		13.2.7 PID-REGLER	217
		13.2.8 ALTERNATIVE PID-REGLERSTRUKTUR:	217
		13.2.9 VERGLEICH DER REGLERTYPEN	218
	13.3	GRUNDSTRUKTUR DES REGELKREISES	219
		13.3.1 DIGITALER REGLER	219
		13.3.2 VORTEILE DIGITALER REGLER:	220
	13.4	DIE REGELSTRECKE	220
	13.5	DIMENSIONIERUNG DES REGLERS	220
		13.5.1 DIMENSIONIERUNG DURCH PROBIEREN (EMPIRISCHES EINSTELLEN)	221
		13.5.1.1 Methode 1	221
		13.5.1.2 Methode 2	221
		13.5.1.2.1 EINSTELLUNG NACH DER SCHWINGUNGSMETHODE:	222
		13.5.1.2.2 EINSTELLUNG NACH DER SPRUNGANTWORT:	223
14.		Warenspeicher	224
	14.1	GESCHWINDIGKEITSPROFIL WARENSPEICHER	226
		14.1.1 VERHÄLTNIS DER GESCHWINDIGKEITEN	228
	14.2	LÄNGENWERTE IM WARENSPEICHER	228
	14.3	Anzahl der Schlaufen	231
	14.4	ÄNDERUNGEN DER ZUGKRAFT IM WARENSPEICHER	233
		14.4.1 BETRACHTUNG BEIM FÜLLEN DES SPEICHERS.	234
		14.4.2 Betrachtung beim Leeren	238
		14.4.3 Drehmomente am Speicherwagen	241
		14.4.4 BETRACHTUNG BEI NOT-STOPP	242
15.		Reibungskoeffizient µ	245
	15.1	REIBUNGSKOEFFIZIENT ABLEITUNG	246
	15.2	Häufige Irrtümer über den Reibungskoeffizienten	247
16.		SCADA	249
	16.1	PRINZIP	249
	16.2	Kommunikation	250
	16.3	TCP Transmission Control Protocol	251
		16.3.1 VERBINDUNGSAUFBAU	251

	16.3.2	Verbindungsabbau	252
16.4	SCAD	A-System einer Kalanderanlage	253
	Längs	sschneiden	254
17.1	SCHER	ENSCHNITT	254
17.2	KLINGE	ENSCHNITT	255
17.3	QUETS	SCHSCHNITT	257
17.4	SCHNE	EIDSTAUB	258
	Ökon	nomische Wickelmaschinen	258
	Herst	tellung von Kunststofffolien	260
19.1	KALAN	IDER	260
	19.1.1	Störfälle am Kalander	261
19.2	Extru	DDER	261
	19.2.1	Extruder mit Breitschlitzdüse	263
			263
			265
			268
20.1	KRISTA	ALLINITÄT	268
20.2	TAKTIZ	ZITÄT	270
20.3	SPANN	NUNGSRELAXATION	273
			274
			275
20.4	RELAX	ATIONSVERHALTEN VON KUNSTSTOFFEN	275
	Eine \	Wickler-Legende	277
21.1	Der A	LQUIST WICKLER	277
21.2	Symbo	OL DER WICKELTECHNIK	277
21.3	HYPER	RBEL-WICKLER	278
	Gloss	sar	281
	Litera	aturverzeichnis	284
	Index	κ	285
	17.1 17.2 17.3 17.4 19.1 19.2 20.1 20.2 20.3	16.4 SCAD Läng: 17.1 SCHER 17.2 KLING 17.3 QUETS 17.4 SCHNE ÖKOR Hersi 19.1 KALAN 19.1.1 19.2 EXTRU 19.2.2 19.2.3 Relax 20.1 KRISTA 20.2 TAKTE 20.3 SPANN 20.3.1 20.3.2 20.4 RELAX Eine 21.1 DER A 21.2 SYMBE 21.3 HYPER Gloss Liters	Längsschneiden 17.1 SCHERENSCHNITT 17.2 KLINGENSCHNITT 17.3 QUETSCHSCHNITT 17.4 SCHNEIDSTAUB ÖKONOMISCHE WICKEIMASCHINEN Herstellung von Kunststofffolien 19.1 KALANDER 19.1.1 STÖRFÄLLE AM KALANDER 19.2.1 EXTRUDER MIT BREITSCHLITZDÜSE 19.2.2 EXTRUDER MIT RINGDÜSEN 19.2.3 BIAXIAL VERSTRECKTES PP Relaxation 20.1 KRISTALLINITÄT 20.2 TAKTIZITÄT 20.3 SPANNUNGSRELAXATION 20.3.1 RETARDATION BZW. KRIECHEN 20.3.2 LANGZEITIGE LASTEINWIRKUNG 20.4 RELAXATIONSVERHALTEN VON KUNSTSTOFFEN EINE WICKEITECHNIK

1. Einleitung

Albert Einstein hat irgendwann gesagt, dass es zu den größten Herausforderungen gehört, eine komplizierte Sache einfach zu erklären. Dem kann man zustimmen. Und gerade bei Fachbüchern für Einsteiger ist es wichtig, dass die einzelnen Themen leicht verständlich erklärt werden.

Wie so vieles, was der Mensch erlernt und ausübt, erhebt auch das Fachgebiet der Wickeltechnik einen gewissen Anspruch auf praktische Übungen in Form von z. B. Wicklungen. Es muss aber nicht immer gleich in der Produktionsanlage probiert werden, denn das ist mit hohen Kosten verbunden. Besser ist es, wenn man den Vorgang im Büro mit einem Rechenprogramm erproben kann. In diesem Buch wird der Versuch unternommen, dem Leser mit Formeln, Tabellen und Grafiken die Problemlösungen näher zu bringen. Außerdem besteht dabei die Möglichkeit, Parameter für den Wickelvorgang zu ändern und das Ergebnis sofort auf dem Bildschirm zu erhalten.

Die Grafiken und Berechnungen in diesem Buch wurden mit dem Kalkulationsprogramm Excel von Microsoft ausgeführt. Das ist natürlich auch mit jedem anderen Kalkulationsprogramm möglich.

Das Aufwickeln von endlosen flachen Folien lässt sich ebenso wie Kochen, Schlittschuhlaufen oder Klavierspielen nicht allein durchs Lesen lernen. Aus einem Lehrbuch kann man zwar in Erfahrung bringen, worauf es bei der Sache ankommt, wozu das eine oder das andere geeignet ist und wie man damit umzugehen hat, aber ohne etwas Praxis gerät das erworbene Wissen ziemlich schnell in Vergessenheit.

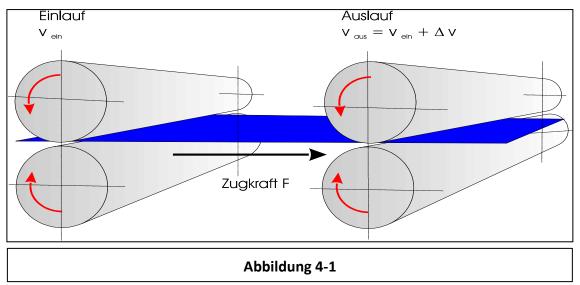
Dieses Buch wurde mit sehr vielen Abbildungen gespickt, die als greifbare Beispiele den Zusammenhang zwischen Bekanntem und Unbekanntem erläutern.

Was hat mich zum Schreiben dieses Buches angeleitet? Es ist das fehlende Verständnis für oft simple Vorgänge an den Maschinen bei der Produktion oder Verarbeitung von Kunststofffolien. Dazu möchte ich ein Zitat von Goethe anbringen:

Man sieht nur, was man weiß.

Damit ist gemeint, dass man nur bekanntes erkennt und unbekanntes ignoriert oder nicht erkennt. Deshalb sieht man auch nur das Bekannte, dass was man kennt und damit weiß, was es ist oder bedeutet.

Mehr Wissen öffnet unsere Wahrnehmungskanäle für neue Aspekte. So mancher ist betriebsblind oder sieht ,den Wald vor lauter Bäumen nicht'. Mit diesem Buch möchte ich einige Themen um das Auf- und Abwickeln von Kunststofffolien aufzeigen. Wobei ich keinen Anspruch auf Vollständigkeit oder gar die optimale Lösung für Problemfälle erhebe. Es soll einzig zum Nachdenken anregen und eventuell jungen Menschen eine Hilfe bei der Ausbildung sein.


Mit mehr Wissen, wachsen auch die Ansprüche. Erst wenn man erkennt, wie andere Konstrukteure eine Lösung oder ein Verfahren gefunden haben, kann man es mit den eigenen Lösungen vergleichen und eventuell Fehler bei sich oder den Anderen feststellen.

4. Messung von Bahnzugspannungen

Überall dort wo flache Materialbahnen über mehrere angetriebene Walzen transportiert werden, ergeben sich durch Abweichungen in den Umfangsgeschwindigkeiten der Walzen Probleme mit den Zugkräften. Entsprechend der physikalischen Eigenschaften der Materialbahn können bereits geringe Differenzen in der Transportgeschwindigkeit hohe Zugkräfte in der Materialbahn hervorrufen.

4.1 Transport von Folien

Beim Transport von flachen Materialbahnen ist eine Zugspannung nur durch eine Erhöhung der Materialgeschwindigkeit in Richtung des Transportes möglich. Eine Spannung in der

Materialbahn kann nur zwischen zwei fest mit der Materialbahn verbundenen und angetriebenen Walzen erfolgen. Damit ist gemeint, dass die formschlüssige Verbindung von dem zu transportierenden Material und den angetriebenen Walzen jederzeit bestehen muss. Ein Schlupf zwischen Material und Walzenoberfläche führt zu indifferenten Zuständen beim Aufbau von Zugspannungen und Materialgeschwindigkeiten.

Anhand der Prinzipskizze in Abbildung 4-1 sollen die Geschwindigkeiten und Kräfte innerhalb einer Transportstrecke erklärt werden. Eine Transportstrecke wird mit Materialeinlauf und Materialauslauf in Materiallaufrichtung bezeichnet und nach obiger Definition ist die Auslaufgeschwindigkeit immer höher als die Einlaufgeschwindigkeit.

Damit ergeben sich die folgenden mathematischen Zusammenhänge:

$$v_{aus} = \Delta v + v_{ein}$$

Formel 4-1

Beim Materialeinlauf wird in einer Zeitdifferenz Δt die Längeneinheit I_0 durchlaufen. Diese Länge I_0 wird bis zum Materialauslauf um die Längendifferenz ΔI gestreckt.

Das bedeutet:

$$l_{aus} = l_{ein} + \Delta l$$

Da die Längeneinheiten in der gleichen Zeit t die Strecke zwischen Materialeinlauf und Materialauslauf passieren müssen, ergeben sich damit die Geschwindigkeiten mit der Länge l oder dem Weg s pro Zeiteinheit t zu

$$\frac{l_{aus}}{t} = \frac{l_{ein}}{t} + \frac{\Delta l}{t}$$

Formel 4-2

Nach dem Hooke'schen Gesetz gelten die Beziehungen für eine Längenänderung ΔI mit der Spannung σ und dem Elastizitäts-Modul E.

$$\sigma = \frac{F}{A} = E \cdot \varepsilon \text{ und } \varepsilon = \frac{\Delta l}{l_0}$$

Werden diese Beziehungen in die Formel 4-2 eingesetzt, so ergeben sich für die Vektoren der Geschwindigkeiten folgende Formeln:

$$\overrightarrow{v_{aus}} = \overrightarrow{v_{ein}} + \frac{\Delta l}{t} = \overrightarrow{v_{ein}} + \frac{\varepsilon \cdot l_{ein}}{t} = \overrightarrow{v_{ein}} + \frac{\sigma \cdot l_{ein}}{E \cdot t} = \overrightarrow{v_{ein}} + \frac{\overrightarrow{F} \cdot l_{ein}}{A \cdot E \cdot t}$$

Darin bedeuten:

Vaus Geschwindigkeit am Auslauf
 Vein Geschwindigkeit am Einlauf
 A Querschnitt der Warenbahn

E Elastizitätsmodul

lein Länge am Einlauf (Ursprungslänge)

t Zeit

In der vektoriellen Schreibweise ist zu erkennen, dass die Geschwindigkeiten die gleiche Richtung wie die Zugkraft *F* haben.

$$\overrightarrow{v_{aus}} = \overrightarrow{v_{ein}} \left(1 + \frac{\overrightarrow{F}}{A \cdot E} \right)$$

Formel 4-3

Die Ausgangsformel zeigt deutlich, dass die Auslaufgeschwindigkeit v_{aus} gegenüber der Einlaufgeschwindigkeit v_{ein} mit der Kraft F proportional ansteigt, sich aber reziprok zum Produkt aus E-Modul E und Querschnitt E verhält.

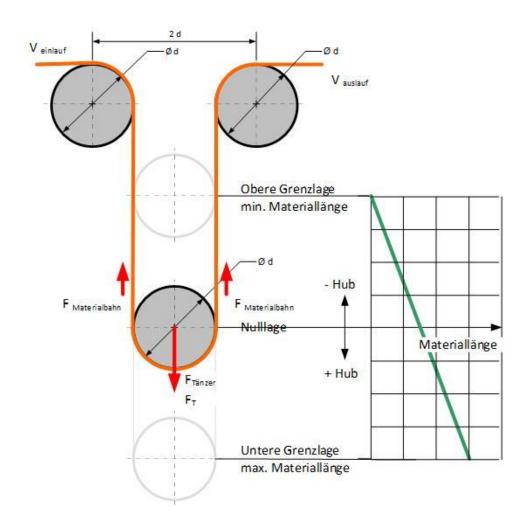
Die Umstellung aus der Formel 4-3 nach der Zugkraft F ergibt:

$$\vec{F} = \left(\frac{\overrightarrow{v_{aus}}}{\overrightarrow{v_{em}}} - 1\right) A \cdot E$$

Formel 4-4

Diese Formel 4-4 gibt anschaulich die Richtung von Geschwindigkeit und Kraft wieder. Wird der Quotient aus v_{aus}/v_{ein} kleiner 1, so wird die Zugkraft negativ, d. h. sie kehrt ihre Richtung gegenüber der Transport- oder der Geschwindigkeitsrichtung um. Bei einem normalen Transport der Materialbahn ist dies nicht möglich, es sei denn, dass die Folie auf der Strecke zwischen Materialein- und -auslauf schrumpft. Das bedeutet, sie hat eine negative Dehnung.

Mit der Formel 4-4 wird bewiesen, dass ohne Zugkraft kein Transport einer Materialbahn möglich ist! Haben die Aus- und Einlaufgeschwindigkeit gleiche Richtung und gleiche Größe, so ist die Zugkraft F = 0.


Um eine definierte Zugkraft F in der Materialbahn in einer Produktionslinie einzustellen und konstant zu halten und dabei die Geschwindigkeit gleichzeitig automatisch anzupassen, werden Tänzer, Pendel oder Zugmesswalzen in der Praxis eingesetzt. Tänzer und Pendel arbeiten mit der Aufnahme oder Abgabe einer Materiallänge in einem Materialspeicher und sind deshalb relativ träge. Zugmesswalzen arbeiten mit einem Messweg von wenigen zehntel

Millimetern und sind deshalb wesentlich schneller in der Reaktion auf Änderungen in einem geschlossenen Regel- und Messkreis.

Eine schnelle Reaktion in einem Regelkreis bedeutet aber gleichzeitig eine hohe Neigung zum Schwingen und deshalb haben Tänzer, Pendel und Bahnzugmesswalzen wegen ihrer unterschiedlichen Eigenschaften ihren Platz in einer Wickelmaschine oder Produktionslinie.

4.2 Tänzer

Es ist nahezu unmöglich zwei Längsantriebe, die den Transport einer gestreckten Warenbahn mit Haftreibung transportieren, so zu synchronisieren, dass die Zugkraft konstant bleibt. Es ist immer ein Korrekturglied zur Anpassung erforderlich, z. B.: ein Tänzer nach Abbildung 4-2.

Abbildung 4-2

Der Tänzer dient der Anpassung von Geschwindigkeit und Transportkraft zwischen zwei Längsantrieben, die durch den Transport einer Materialbahn miteinander verbunden sind. Dazu wird eine Materialschlaufe zwischen zwei feststehenden Walzen und einer dazwischen platzierten und in der Höhe (vertikal oder horizontal) beweglichen Walze gebildet. Die

bewegliche Walze wird mit der Tänzerkraft F_T in die Materialbahn gedrückt und erzeugt in der Materialbahn die Bahnzugkraft F_M .

Wegen der Umschlingung von 180° besteht die Beziehung

$$F_T = 2 \cdot F_M$$

Darin bedeuten:

 F_T Belastung des Tänzers in N F_M Belastung der Materialbahn in N

Die Tänzerwalze muss in Linearführungen geführt werden. Die Kraft auf die Tänzerwalze kann durch Pneumatik-, Hydraulikzylinder oder Gewichtskraft gebildet werden. Je nach Höhe der zu realisierenden Tänzerkraft muss die Masse der Tänzerwalze mit der gesamten zur Führung notwendigen beweglichen Mechanik durch Ausgleichsgewichte kompensiert werden. Zur Bestimmung der Beschleunigungskräfte sind alle beweglichen Massen in der Berechnung für die Massenträgheitsmomente zu beachten.

4.2.1 Bahnzugkraft durch Tänzer

Die Tänzerwalze ist von der oberen bis zur unteren Grenzlage stets mit einem Umschlingungswinkel von 180° umschlungen. Da sich die Ein- und Auslaufwinkel an der Tänzerwalze nicht ändern, ist auch die Zugkraft in der Materialbahn konstant und ist genau die Hälfte der Tänzerkraft F_{7} .

Der Vorteil einer Tänzeranordnung liegt in der streng proportionalen Materialaufnahme durch den Hub der Tänzerwalze und der dabei konstant gehaltenen Zugkräfte in der Materialbahn. Jedoch ist der hohe mechanische Aufwand für die vertikale oder horizontale Führung der Tänzerwalze sehr viel aufwändiger und nicht verlustfrei gegenüber einem Pendel. Deshalb wird die Tänzerwalze heute nur noch selten eingesetzt.

4.2.2 Steuerung der Materialgeschwindigkeit

Der Hub der Tänzerwalze wird direkt oder indirekt gemessen und in ein elektrisches Signal umgesetzt. Dabei hat die untere Grenzlage den Wert null und die obere Grenzlage den maximalen Wert, z. B.: 10 V. Zu dem Wert für den Hub wird eine negative Spannung von der halben Größe des maximalen Wertes, in diesem Beispiel also – 5 V, addiert.

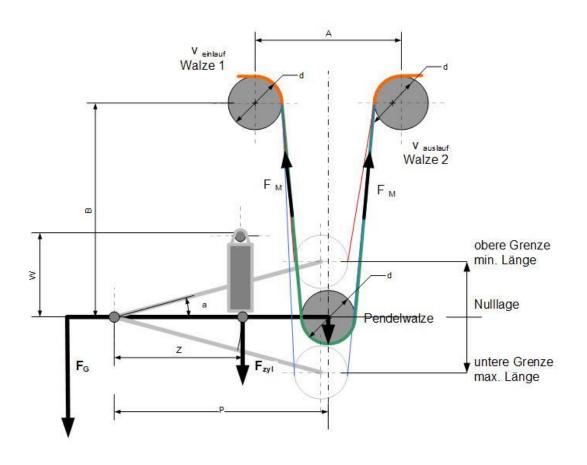
Wird die Tänzerwalze über den gesamten Hub bewegt, so ergibt sich ein Signal mit einem negativen und einem positiven Wert. In der mechanischen Mitte ergibt sich ein Ausgangssignal von null.

Im Bereich oberhalb der Nulllage ist die einlaufende Materialgeschwindigkeit geringer als die auslaufende Materialgeschwindigkeit, es wird Materiallänge aus dem Materialspeicher der Tänzerwalze entnommen. Um dieses zu verhindern, muss also der Folgeantrieb, der die auslaufende Geschwindigkeit bestimmt, langsamer werden.

Im Bereich unterhalb der Nulllage ist die einlaufende Materialgeschwindigkeit höher als die auslaufende Materialgeschwindigkeit, es wird Materiallänge in dem Materialspeicher eingespeichert. Um dieses zu verhindern, muss also der Folgeantrieb, der die auslaufende Geschwindigkeit bestimmt, schneller werden.

Entsprechend dieser Definition wird der Folgeantrieb bei positivem Ausgangssignal langsamer und bei negativem Ausgangssignal schneller.

4.3 Pendel


4.3.1 Allgemein

Ein Pendel dient der Anpassung von Geschwindigkeit und Transportkraft zwischen zwei Längsantrieben, die beide durch den Transport einer Materialbahn miteinander verbunden sind. Dazu wird eine Materialschlaufe zwischen zwei auf gleicher Höhe mit dem Abstand A feststehenden Walzen (Walze 1 und Walze 2) und einer beweglichen Walze (Pendelwalze) gebildet. Die Pendelwalze wird in zwei Armen mit der Länge P gelagert und um einen gemeinsamen Drehpunkt gedreht. Durch die Drehung um den Winkel α wird die Materialschlaufe zwischen den beiden feststehenden Walzen durch Einbringung einer Pendelkraft F_P aufgenommen.

Das Pendelsystem kann waagerecht oder senkrecht angeordnet werden.


4.3.2 Pendel waagerecht

Entgegen der Anordnung bei einem Tänzer nach Abbildung 4-2 ändern sich bei einem Pendel nach Abbildung 4-3 mit dem Pendelwinkel α sämtliche Winkel innerhalb der Bahnführung

Abbildung 4-3

Mit der Entwicklung neuer Gleichrichtertechnologien wurde der Reihenschlussmotor durch den Nebenschlussmotor abgelöst. Durch die Fremderregung und das nur gering abfallende Drehmoment über den gesamten Drehzahlbereich, war dieser Motor in Zusammenhang mit der elektronischen Antriebstechnik wesentlich besser für den Einsatz in Wendewickelmaschinen in Produktionslinien geeignet. Durch die ständige Erfassung der Zugkraft in der Materialbahn war es möglich das Toleranzfeld beim Aufwickeln und Abwickeln in automatischen Wickelmaschinen sehr klein zu halten.

Abbildung 21-1Betriebskennlinie eines ALQUIST-Wicklers

Die heutige Entwicklungsstufe beim Wickeln ist die Lösung mit Asynchronmotoren und Frequenzumrichtern. Wenn eine hohe Dynamik vom Antrieb gefordert wird, kommt auch der Synchronmotor zum Einsatz.

22. Glossar

Definitionen und Terminologie

Für die Anwendung der Norm DIN EN 13418 gelten die folgenden Definitionen:

Arbeitsbereich: Der Bereich in dem sich das Bedienungspersonal bei den von

ihm auszuübenden Tätigkeiten an Maschinen aufhält. Es können auch Gänge, Arbeitsgruben sowie an der Maschine fest

angebrachte Einrichtung, wie z.B. Treppen, Bühnen und

Podeste, aller Art sein.

Die Tätigkeit des Bedienungspersonals kann umfassen:

Schalten, Ingangsetzen, Inganghalten, Stillsetzen, Führen, Zuführen und Abführen, Überwachen von Arbeitsabläufen, Prüfen von Arbeitsergebnissen, Beheben von Störungen im Arbeitsablauf.

Trans	port de	r War	enbahn
Hulls	portac	.i vvai	CHBailli

Bahnzugkontrolle

Bahnführungswalze

Festpunkt Klemmwalzen

Messwalze

Pendelwalze

Rolle

Tänzerwalze

Umfangswickler

Umschlingungswalze/n

Vakuumwalzen

Wickelmaschinen

angetriebene oder nicht angetriebene Walzensysteme Nicht angetriebene Walze zur Führung der Warenbahn Festpunkt ist eine geschwindigkeitsgebende Walzengruppe Walzen, die gegeneinandergedrückt sind; mindestens eine Walze ist angetrieben. Die durch den Walzenspalt geführte Bahn wird aufgrund der Klemmwirkung und des Antriebes abgezogen.

Bahnzugkontrolle ist die Erfassung des Bahnzuges durch

Eine Umlenkwalze, deren Achse in Messlagern gehalten wird. Die Messlager erfassen den Bahnzug.

Eine Umlenkwalze, die in einem schwenkbaren Hebel

aufgehängt ist, wobei die Bahn von einer festen Walze in einer Schleife über die Umlenkwalze zu einer festen Walze geführt wird. Die Belastung der Pendelwalze bestimmt den Bahnzug.

Das auf den Wickelkern fertig aufgewickelte bahnförmige

Material.

Eine Umlenkwalze, die geradlinig geführt wird. Die

Belastung der Tänzerwalze bestimmt den Bahnzug.

Eine Wickelmaschine, mit Antrieb des Wickels über dessen

Eine oder mehrere angetriebene Walzen, die die Bahn durch

die Umschlingungsreibung ziehen.

Angetriebene Walzen, bei denen ein Unterdruck die Bahn an

die Walzen anlegt, um die Zugkraft für die Bahn

aufzubringen.

Maschinen, die bahnförmiges Material auf unterschiedliche

Durchmesser aufwickeln bzw. abwickeln. Die

unterschiedlichen Maschinenarten unterscheiden sich durch

die Antriebsart. Es wird zwischen Zentrumswickler, Umfangswickler und Kombinationen aus beiden

unterschieden.

Eine Maschine mit zentralem Antrieb des Wickelkerns. Zentrumswickler

Wicke	ctal	lon	haraid
AAICKE	Stei	IEIII	nereici

Abwickelstelle

Anwickeleinrichtung

Aufwickelstelle

Bahnverbindungseinrichtung

Dreipunktlager

Führungsschlitten

Gabellager

Klapplager/Schiebelager

Kontaktwalze/Andruckwalze

Pinole

Quertrenneinrichtung

Rollenwechseleinrichtung

Schlagschnitteinrichtung

Schwenkarm

Spannbacken

Wendeeinrichtung

Wickelkern

Wickelkernaufnahme

Wickelkernbeschickung

Wickelkernentnahme

Ziehschnitteinrichtung

Die Stelle, an der dem Wickler abgeführtes bahnförmiges Material von einer zylindrischen Rolle abgewickelt wird. Eine Einrichtung, die während der Produktion automatisch die Bahn an einen leeren Wickelbern anlegt.

Die Stelle, an der dem Wickler zugeführtes bahnförmiges Material zu einer zylindrischen Rolle aufgewickelt wird. Eine Einrichtung, die zum automatischen Verbinden des ablaufenden Bahnendes mit dem Bahnanfang der neuen Rolle dient.

Eine Einrichtung zur Aufnahme von Wickelkernen mittels zweier fester und eines beweglichen dritten Lagerpunktes, die nicht zur Kraftübertragung dient.

Eine Einrichtung, die die Rolle oder die Kontaktwalze auf linearem Weg führt, um die Wickelparameter einzuhalten. Eine Einrichtung zur beidseitigen offenen Aufnahme eines Wickelkerns ohne Kraftübertragung.

Eine formschlüssige Wickelkernaufnahme, die durch Klappen oder Schieben eines Handtellers geschlossen oder geöffnet wird.

Eine Einrichtung, die für eine kontrollierte Bahnaufwicklung eingesetzt wird.

Ein einseitig gelagertes Spannelement, wobei zur Wickelkernneinspannung mindestens eins von beiden Spannelementen axial verstellbar ist. Die Pinole kann je nach Ausführung zur form- und/oder kraftschlüssigen Verbindung dienen.

Eine Einrichtung, die den Wickelzyklus durch Trennen der Bahn quer zur Laufrichtung beendet.

Eine Einrichtung, die einen kontinuierlichen Ab- bzw. Aufwickelprozess gewährleistet.

Eine Einrichtung, bei der ein Messer die Bahn durch eine schlagartige Bewegung quer zur Laufrichtung trennt.

Aufnahme und Ablage der Rolle über eine

Schwenkbewegung

Eine Einrichtung zur haft- und/oder formschlüssigen Einspannung des Wickelkerns durch radiale Anstellung der Spannsegmente.

Eine Einrichtung, die über eine Drehbewegung die Ab- oder Aufwickelstelle in eine Aufnahme- oder Ablageposition der Rolle oder des Wickelkerns bringt.

Ein Wickelkern ist sowohl eine achslos gespannte Papphülse als auch eine durch die Achse gespannte Papphülse.

Eine Einrichtung, die zur Aufnahme und Fixierung von

Wickelkernen dient.

Eine Einrichtung, die zur Zuführung der leeren Wickelkerne

entweder in ein Magazin oder direkt in eine

Anwickelposition dient.

Eine Einrichtung, die als Bestandteil der Abwickelstelle

Wickelkerne entnimmt und abgibt.

Eine Einrichtung, bei der ein Messer, rotierend oder feststehend (z. B.: Scherenmesser, Quetschmesser, Bandmesser oder Klinge), zum Trennen der Bahn quer zur

Laufrichtung bewegt wird.

Wickelstellenbereich

Trennunterstützung

Eine Einrichtung, die den Trennvorgang der Bahn ermöglicht und optimiert.

Rollenentnahme- und Rollenbeschickungseinrichtungen

Rollenentnahmeeinrichtung Rollenbeschickungseinrichtung Eine Einrichtung zur Entnahme der aufgewickelten Rolle. Eine Einrichtung, die die Rolle in die Abwickelstelle führt.

Zusatzeinrichtungen

Vorbehandlung

Breithalteeinrichtung

Längstrenneinrichtung

Schlitzeinrichtung

Eine Einrichtung innerhalb der Wickelmaschine, die die Oberfläche der Bahn zum späteren Bedrucken vorbereitet. Eine Einrichtung, die verhindert, dass die zu wickelnde Bahn schmaler wird oder Falten wirft und die zum

Auseinanderführen oder -halten von Streifen dient.

Eine Einrichtung zur Erzielung einer geschnittenen Bahn von einer bestimmten Bahnbreite. Mit dem System kann die Bahn außerdem in zwei oder mehrere Streifen geschnitten werden. Es gibt verschiedene Arten von Schneideinrichtungen, zum Beispiel mit:

- Feststehenden Schneidmessern (Klingenschnitt)
- Kreismessern (Scherenschnitt)

Eine Einrichtung, die zum Auftrennen einer schlauchförmigen Bahn in der Falzkante dient.

Abfallstreifenrückführung

Abfallstreifenaufwicklung

Eine Einrichtung zum Abführen und Aufwickeln von Abfallstreifen.

Abfallstreifenzerkleinerung

Eine Einrichtung zur Zerkleinerung von Abfallstreifen, mit oder ohne Einzugsvorrichtung.

Abfallstreifenabsaugeinrichtung

Eine Einrichtung zum Abführen und Fördern von Abfallstreifen mittels Luftförderung und Unterdruck

Bahnsteuerung Ionisationseinrichtung Eine Einrichtung zur automatischen Ausrichtung der Bahn. Eine Einrichtung zum Abbau elektrischer Aufladung an der Oberfläche der Bahn mittels elektrischen Feldes.